1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Angela Akeroyd edited this page 6 months ago


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions ranging from 1.5 to 70 billion parameters to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled variations of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses reinforcement discovering to boost reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial distinguishing function is its support learning (RL) step, which was used to refine the design's actions beyond the standard pre-training and tweak process. By incorporating RL, DeepSeek-R1 can adapt more effectively to user feedback and objectives, ultimately enhancing both importance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, implying it's equipped to break down complex queries and factor through them in a detailed manner. This directed thinking process allows the design to produce more accurate, transparent, and detailed responses. This model combines RL-based fine-tuning with CoT abilities, aiming to generate structured actions while concentrating on interpretability and user interaction. With its wide-ranging abilities DeepSeek-R1 has recorded the market's attention as a flexible text-generation model that can be integrated into different workflows such as representatives, logical thinking and data interpretation tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture permits activation of 37 billion parameters, making it possible for effective inference by routing queries to the most appropriate specialist "clusters." This approach permits the model to focus on different issue domains while maintaining total effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more efficient designs to imitate the habits and thinking patterns of the bigger DeepSeek-R1 model, using it as an instructor model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise releasing this design with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to present safeguards, prevent hazardous content, and evaluate models against crucial security requirements. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create several guardrails tailored to various use cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, engel-und-waisen.de choose Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limit increase, create a limit boost demand and connect to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For guidelines, see Establish approvals to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, avoid hazardous content, and examine models against essential safety criteria. You can implement precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general circulation involves the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock gives you access to over 100 popular, emerging, and systemcheck-wiki.de specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, choose Model catalog under Foundation designs in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and select the DeepSeek-R1 model.

The model detail page supplies vital details about the design's abilities, rates structure, and application guidelines. You can find detailed use directions, including sample API calls and code snippets for combination. The design supports different text generation tasks, consisting of content production, code generation, and question answering, utilizing its support discovering optimization and CoT reasoning capabilities. The page also includes deployment choices and licensing details to assist you begin with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be triggered to configure the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Variety of circumstances, go into a number of instances (in between 1-100). 6. For example type, choose your instance type. For optimum performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can configure innovative security and facilities settings, including virtual private cloud (VPC) networking, service function consents, and file encryption settings. For most utilize cases, the default settings will work well. However, for production releases, you might wish to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the deployment is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive interface where you can explore different triggers and change model specifications like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimal outcomes. For example, material for inference.

This is an exceptional method to check out the design's reasoning and text generation capabilities before integrating it into your applications. The play area offers immediate feedback, helping you comprehend how the design reacts to numerous inputs and letting you tweak your prompts for optimum results.

You can rapidly test the model in the play area through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to perform inference utilizing a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime client, sets up reasoning parameters, and sends out a demand to create text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML options that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart uses two practical approaches: utilizing the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to help you choose the approach that finest matches your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design internet browser shows available designs, with details like the provider name and wiki.snooze-hotelsoftware.de model capabilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card shows crucial details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if suitable), showing that this model can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the design

    5. Choose the design card to view the model details page.

    The model details page includes the following details:

    - The model name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you deploy the design, it's advised to examine the model details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the instantly created name or produce a customized one.
  1. For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the variety of circumstances (default: 1). Selecting appropriate instance types and counts is vital for expense and performance optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we highly suggest adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to deploy the model.

    The implementation process can take numerous minutes to complete.

    When implementation is total, your endpoint status will alter to InService. At this moment, the design is all set to accept inference demands through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the implementation is complete, you can invoke the model utilizing a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get going with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS permissions and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the design is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run extra requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Tidy up

    To prevent undesirable charges, complete the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the model using Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace implementations.
  5. In the Managed releases area, find the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the appropriate deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build innovative solutions using AWS services and accelerated compute. Currently, he is focused on establishing strategies for fine-tuning and enhancing the reasoning performance of big language designs. In his free time, Vivek enjoys hiking, watching motion pictures, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about building solutions that help customers accelerate their AI journey and wiki.whenparked.com unlock service value.